Suddenly, it dawned upon me. I'd like to introduce a concept for breath-holding which really isn't new, but should explain a lot of weird mysteries many of us have noticed while doing apnea.
Let's start with some physiology review:
- O2 has almost no solubility in water
- CO2 is very soluble in water
Because of that,
- Most of your oxygen must be stored in hemoglobin and myoglobin, and lungs
- CO2 can be dissolved in the blood plasma (i.e. blood water), as well as the rest of the water in the body
The 'bohr' effect states that the hemoglobin will only release oxygen in the presence of adequate acidity.
When CO2 dissolves in water, it creates carbonic acid, and thus acidity.
[this is all old news, just bear with me]
Thus, when you overbreathe, your CO2 level goes down, and your blood becomes very alkaline, preventing hemoglobin from releasing O2.
Further, low CO2 causes blood vessels to vasoconstrict. Vasoconstriction prevents blood flow, and thus prevents oxygen flow to vasoconstricted areas. The result is tingling fingers, fading vision, and finally hypocapnic blackout.
However, all of those effects are caused primarily by the acidity (or alkalinity) of the blood itself. By rapidly hyperventilating, you will rapidly change the acid-base balance of your blood. However, in the short term, the remaining 50kg of water in your body will not be affected. This is a huge point.
Let's divide your body water into two compartments:
- Water in the blood (i.e. blood plasma) = about 5L
- Water in the rest of the body (body water) = about 50L
As you hyperventilate, your blood water rapidly becomes alkaline, and can cause a hypocapnic blackout. This could occur even if your BODY WATER were still very acidic, and laced with CO2.
For example, suppose you finished a CO2 table and were laced with CO2. Now, you hyperventilate until your vision fades. You conclude that you have blown off all the CO2 from the CO2 table -- incorrect. Your blood is now alkaline, but your body water is still very acidic, because it takes a long time for acidity to 'diffuse' from your body water into your blood, and vice-versa.
The same effect can be seen by watching your exhaled CO2% during a CO2 table. If you do a pattern of 1'30" hold, one breath, 1'30" hold, one breath, etc., and you measure your expired CO2% on each exhale, it will quickly rise to around 7.5%, and remain there for many cycles. You assume that you are in a steady state, blowing off the same amount of CO2 that you are accumulating. In fact, the CO2 is diffusing into the body water. If you keep it up for at least 10 minutes, then, still doing the same pattern, suddenly your expired CO2 will soar to 8.0%, 8.5%, 9.0%, and 9.5% and 10% -- because now your body water is saturated with CO2 and there is no where else for the CO2 to go.
For a long time I did the following static pattern [note; hyperventilation in this context means fire breathing]
- two breaths, then inhale+pack, 3'30" static
- short recovery
- two breaths, then inhale+pack, 5'00" static
- 2'00" of hyperventilating
- Full exhale, 2'00" static
- 2'00" of hyperventilating
- Full exhale, 2'00" static
- 2'00" hyperventilating
- Full pack, 6'00" static
- 2'00" hyperventilating
- Full pack, max static, 6'30"+
The contractions would come the latest on the last breath-hold. I would feel heavily depleted from the exhale statics, and too many statics in general. However, for a reason which I didn't understand, I needed this long pattern in order to delay the contractions long enough to hit a huge time. I could only hyperventilate for 2 minutes -- no more -- otherwise I would black out during packing (not to mention feel awful).
I assumed that 2 minutes of hyperventilation would 'blow off' all my CO2 (since I would get all light-headed). If that were so, then it seems that a 2-minute hyperventilation on only the 2nd or 3rd breath-hold should do it, and delay the contractions as much as I needed -- but it wouldn't work. Why did I need so many cycles?
In fact, if you look at the above pattern, there is a total of 8 minutes of hyperventilation. The exhale statics are so short they don't result in CO2 accumulation. Even the 6'00" inhale static did not accumulate much CO2, as evidenced by my CO2 monitor upon exhaling.
What was really happening was that I needed 8 minutes of hyperventilation to 'blow off' the CO2 stored in my body water. Because of slow diffusion, it is impossible to blow off the body water CO2 in only 2 minutes of hyperventilation, even though those same 2 minutes caused me to nearly black out from hypocapnia.
So, this would explain why some people have great success by doing 8-minute breathe-ups, doing relatively slow, deep breathing. The breathing rate is not enough to over-alkalinize the blood (i.e. no hypocapnia blackout), but, by maintaining the blood generally alkaline, it allows a gradual blow off of the CO2 stored in the giant 50L body water supply.
So, if my hypothesis is correct, then a slow, 8 or 10 minute breathe-up, should delay the contractions far more than 2 or 3 minutes of hyperventilation to the point of dizziness.
So, to summarize:
________________________
"CO2 Compartment Hypothesis":
- Rapid hyperventilation changes the blood acidity rapidly, and does not allow the body water to equalize with the blood. Rapid hyperventilation will cause light-headedness and hypocapnia symptoms long before the body water is alkaline. In order to alkalinize the body water, the blood must be kept alkaline for a long time (10 minutes+). In order to acidify the body water, the blood must be kept acidic for a long time (10min+). Using this methodology, the athlete can choose to begin his apnea in any one of four configurations:
1. Acidic blood, alkaline body water
2. Acidic blood, acidic body water
3. Alkaline blood, alkaline body water
4. Alkaline blood, acidic body water
Each state would be reached by approximately the following pattern:
1. Acidic blood/alkaline body water = 10 minutes of slow deep breathing, followed by a 5-minute CO2 table
2. Acidic blood/acidic body water = 20-minute CO2 table
3. Alkaline blood, alkaline body water = 10 minutes of slow deep breathing
4. Alkaline blood, acidic body water = 20-minute CO2 table followed by 2 minutes of rapid hyperventilation
____________________________
Application to the Real World
Given that blacking out from packing, and all hypocapnic blackouts are caused by alkaline blood, then in theory the diver could reach a very low state of total CO2 without suffering from hypocapnic problems by choosing state #1 = acidic blood, alkaline body water. In fact, the blood would not need to be acidic, just neutral. So, 10 minutes of slow deep breathing, followed by a 2 minute breath-hold, should allow the diver to inhale and pack to the max without hypocapnic symptoms. At the same time, the alkalinity of the body water would be so high that the diver would have a huge CO2 buffering capacity.
Eric Fattah
BC, Canada
Let's start with some physiology review:
- O2 has almost no solubility in water
- CO2 is very soluble in water
Because of that,
- Most of your oxygen must be stored in hemoglobin and myoglobin, and lungs
- CO2 can be dissolved in the blood plasma (i.e. blood water), as well as the rest of the water in the body
The 'bohr' effect states that the hemoglobin will only release oxygen in the presence of adequate acidity.
When CO2 dissolves in water, it creates carbonic acid, and thus acidity.
[this is all old news, just bear with me]
Thus, when you overbreathe, your CO2 level goes down, and your blood becomes very alkaline, preventing hemoglobin from releasing O2.
Further, low CO2 causes blood vessels to vasoconstrict. Vasoconstriction prevents blood flow, and thus prevents oxygen flow to vasoconstricted areas. The result is tingling fingers, fading vision, and finally hypocapnic blackout.
However, all of those effects are caused primarily by the acidity (or alkalinity) of the blood itself. By rapidly hyperventilating, you will rapidly change the acid-base balance of your blood. However, in the short term, the remaining 50kg of water in your body will not be affected. This is a huge point.
Let's divide your body water into two compartments:
- Water in the blood (i.e. blood plasma) = about 5L
- Water in the rest of the body (body water) = about 50L
As you hyperventilate, your blood water rapidly becomes alkaline, and can cause a hypocapnic blackout. This could occur even if your BODY WATER were still very acidic, and laced with CO2.
For example, suppose you finished a CO2 table and were laced with CO2. Now, you hyperventilate until your vision fades. You conclude that you have blown off all the CO2 from the CO2 table -- incorrect. Your blood is now alkaline, but your body water is still very acidic, because it takes a long time for acidity to 'diffuse' from your body water into your blood, and vice-versa.
The same effect can be seen by watching your exhaled CO2% during a CO2 table. If you do a pattern of 1'30" hold, one breath, 1'30" hold, one breath, etc., and you measure your expired CO2% on each exhale, it will quickly rise to around 7.5%, and remain there for many cycles. You assume that you are in a steady state, blowing off the same amount of CO2 that you are accumulating. In fact, the CO2 is diffusing into the body water. If you keep it up for at least 10 minutes, then, still doing the same pattern, suddenly your expired CO2 will soar to 8.0%, 8.5%, 9.0%, and 9.5% and 10% -- because now your body water is saturated with CO2 and there is no where else for the CO2 to go.
For a long time I did the following static pattern [note; hyperventilation in this context means fire breathing]
- two breaths, then inhale+pack, 3'30" static
- short recovery
- two breaths, then inhale+pack, 5'00" static
- 2'00" of hyperventilating
- Full exhale, 2'00" static
- 2'00" of hyperventilating
- Full exhale, 2'00" static
- 2'00" hyperventilating
- Full pack, 6'00" static
- 2'00" hyperventilating
- Full pack, max static, 6'30"+
The contractions would come the latest on the last breath-hold. I would feel heavily depleted from the exhale statics, and too many statics in general. However, for a reason which I didn't understand, I needed this long pattern in order to delay the contractions long enough to hit a huge time. I could only hyperventilate for 2 minutes -- no more -- otherwise I would black out during packing (not to mention feel awful).
I assumed that 2 minutes of hyperventilation would 'blow off' all my CO2 (since I would get all light-headed). If that were so, then it seems that a 2-minute hyperventilation on only the 2nd or 3rd breath-hold should do it, and delay the contractions as much as I needed -- but it wouldn't work. Why did I need so many cycles?
In fact, if you look at the above pattern, there is a total of 8 minutes of hyperventilation. The exhale statics are so short they don't result in CO2 accumulation. Even the 6'00" inhale static did not accumulate much CO2, as evidenced by my CO2 monitor upon exhaling.
What was really happening was that I needed 8 minutes of hyperventilation to 'blow off' the CO2 stored in my body water. Because of slow diffusion, it is impossible to blow off the body water CO2 in only 2 minutes of hyperventilation, even though those same 2 minutes caused me to nearly black out from hypocapnia.
So, this would explain why some people have great success by doing 8-minute breathe-ups, doing relatively slow, deep breathing. The breathing rate is not enough to over-alkalinize the blood (i.e. no hypocapnia blackout), but, by maintaining the blood generally alkaline, it allows a gradual blow off of the CO2 stored in the giant 50L body water supply.
So, if my hypothesis is correct, then a slow, 8 or 10 minute breathe-up, should delay the contractions far more than 2 or 3 minutes of hyperventilation to the point of dizziness.
So, to summarize:
________________________
"CO2 Compartment Hypothesis":
- Rapid hyperventilation changes the blood acidity rapidly, and does not allow the body water to equalize with the blood. Rapid hyperventilation will cause light-headedness and hypocapnia symptoms long before the body water is alkaline. In order to alkalinize the body water, the blood must be kept alkaline for a long time (10 minutes+). In order to acidify the body water, the blood must be kept acidic for a long time (10min+). Using this methodology, the athlete can choose to begin his apnea in any one of four configurations:
1. Acidic blood, alkaline body water
2. Acidic blood, acidic body water
3. Alkaline blood, alkaline body water
4. Alkaline blood, acidic body water
Each state would be reached by approximately the following pattern:
1. Acidic blood/alkaline body water = 10 minutes of slow deep breathing, followed by a 5-minute CO2 table
2. Acidic blood/acidic body water = 20-minute CO2 table
3. Alkaline blood, alkaline body water = 10 minutes of slow deep breathing
4. Alkaline blood, acidic body water = 20-minute CO2 table followed by 2 minutes of rapid hyperventilation
____________________________
Application to the Real World
Given that blacking out from packing, and all hypocapnic blackouts are caused by alkaline blood, then in theory the diver could reach a very low state of total CO2 without suffering from hypocapnic problems by choosing state #1 = acidic blood, alkaline body water. In fact, the blood would not need to be acidic, just neutral. So, 10 minutes of slow deep breathing, followed by a 2 minute breath-hold, should allow the diver to inhale and pack to the max without hypocapnic symptoms. At the same time, the alkalinity of the body water would be so high that the diver would have a huge CO2 buffering capacity.
Eric Fattah
BC, Canada